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Water Content of Aluminum, Dialysis
Dementia, and Osteomalacia

by Michael R. Wills* and John Savory*

In the presence of normal renal function, a high concentration of aluminum in drinking water has been
implicated as a factor in the etiology of a neurological syndrome in one specific geographical area. The
role of aluminum as a toxic agent in other neurological disorders, where renal function is normal, is
controversial.

Aluminum is absorbed from the gastrointestinal tract and is normally excreted by the kidneys in the
urine. In patients with chronic renal failure, aluminum appears to be of proven toxicological importance.
In these patients the accumulation of aluminum in tissues causes an encephalopathy (dialysis encepha-
lopathy or dialysis dementia), a specific form of metabolic bone disease (osteomalacic dialysis osteodys-
trophy), and an anemia and also plays an etiological role in some of the other complications associated
with end-stage chronic renal disease. A failure in the normal renal excretory mechanism accounts for the
tissue accumulation in chronic renal failure. The majority of chronic renal failure patients who develop
aluminum toxicity are on long-term treatment with either hemo- or peritoneal dialysis; some patients
develop toxicity who are only on treatment with aluminum-containing phosphate-binding agents.

Aluminum in the dialysate appears to be the major source of the metal in chronic renal failure patients
who develop aluminum toxicity. The aluminum content of the dialysate depends primarily on the content
of the water with which it is prepared; there may be some contribution from the chemicals used in the
concentrate which is added to the water. Some domestic tap-water supplies contain aluminum in high
concentration, either naturally or because aluminum has been added as a flocculant in the purification
process. Acid rain markedly increases the “natural” aluminum content of water.

The driving force for aluminum transfer during dialysis seems to be the effective concentration gradient
between the dialysate aluminum and the free diffusible serum aluminum fraction. The transfer of alu-
minum from the dialysate across the dialyzing membrane appears to occur despite low concentrations of
the metal in the dialysate. The species of aluminum in tap water and dialysate may significantly affect
the dialysability of aluminum into the blood compartment and its subsequent deposition in tissues. The
major portion, if not all, of aluminum in blood is tightly bound to serum proteins and an as yet unidentified

lower molecular weight species.

Aluminum is the third most abundant element in the
earth’s crust and is the most abundant metal. Attention
was first drawn to the potential role of aluminum as a
toxic metal over 50 years ago. Aluminum cooking uten-
sils were being introduced at that time, and these to-
gether with the aluminum present in city drinking-
water and a variety of medicines were considered to
represent a potential health hazard (7). In the inter-
vening years, although the subject has been controver-
sial, aluminum was not, until recently, recognized as a
toxic metal. Aluminum was dismissed as a toxic metal
in a comprehensive review in 1957 (2) and again as re-
cently as 1974 (3). The only health hazard recognized,
in those reviews, was that associated with industrial
exposure and the inhalation of heavily aluminum-con-
taminated dust particles. The inhalation of dust heavily
contaminated with aluminum, in an industrial environ-
ment, is a recognized cause of pulmonary fibrosis, usu-
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ally an interstitial fibrosis of the upper lobes. Less com-
monly, aluminum exposure has been linked with a
pulmonary granulomatosis.

Aluminum Toxicity

Normal Renal Function

In patients with normal renal function, aluminum has
recently been implicated as a factor in the etiology of
the amyotrophic lateral sclerosis and Parkinsonism-de-
mentia found in the indigenous (Chamorro) population
of Guam (4). In brain tissue from two patients with the
disease, an accumulation of aluminum was demon-
strated within the nuclear region and perikaryal cyto-
plasm of neurofibrillary tangle-bearing hippocampal
neurons (4). Soil and drinking water from areas in which
there was a high incidence of these disorders had a high
aluminum content with low concentrations of calcium
and magnesium. There is some evidence to support the
hypothesis that secondary hyperparathyroidism, pro-
voked by the chronic environmental deficiency of cal-
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cium and magnesium on Guam, may result in the in-
creased intestinal absorption of aluminum, its
subsequent deposition in the central nervous system
and the high incidence of amyotrophic lateral sclerosis
and Parkinsonism-dementia (5).

Aluminum has also been implicated as a neurotoxic
agent in the pathogenesis of Alzheimer’s disease. In
brain tissue from patients with this disorder accumu-
lations of aluminum have been identified within the nu-
clear region of a high percentage of neurons containing
neurofibrillary tangles (6,7). In the same patients, ad-
Jjacent normal appearing neurons were virtually free of
detectable aluminum (6). The precise pathogenic role of
aluminum in Alzheimer’s disease is controversial and
remains to be defined. It has been proposed that the
accumulation of aluminum in brain tissue of patients
with Alzheimer’s disease may be a secondary phenom-
enon rather than an etiological agent (8). In this concept
the accumulation of aluminum would represent a rela-
tively nonspecific “marker” of neurons that are degen-
erating rather than be a specific etiological factor. In
support of this concept is the fact that the aluminum
concentrations are not elevated in specimens of serum
and cerebrospinal fluid from patients with Alzheimer’s
disease.

Chronic Renal Failure

Although the toxicity of aluminum in the presence of
normal renal function remains to be clearly defined it
has been established, in the past decade, that aluminum
has a toxic action in patients with impaired renal func-
tion. An increased serum aluminum concentration, and
clinical manifestations of toxicity, may occur in patients
with chronic renal failure who are on long-term treat-
ment with either hemodialysis or peritoneal dialysis and
may also occur in some patients who have not been
dialyzed (9). The latter group of patients usually consists
of children who are receiving oral treatment with alu-
minum hydroxide (10,11). Hyperaluminemia associated
with toxic clinical sequelae may, however, also occur in
adults who are not on dialysis treatment (12). In pa-
tients with chronic renal failure the clinical toxic phe-
nomena associated with an increased body burden of
aluminum include a specific encephalopathy (dialysis en-
cephalopathy), a metabolic bone disease (osteomalacic
dialysis osteodystrophy), and an anemia; aluminum may
also be responsible for some of the other clinical features
associated with end-stage renal disease (9). The impor-
tance of these aluminum-induced toxic phenomena in
patients with chronic renal failure is that they can be
prevented.

Hyperaluminemia

An increase in the serum aluminum concentration of
some patients with end-stage chronic renal failure was
first recorded by Berlyne and his colleagues in 1970 (13).
They reported that in some chronic renal failure patients
who were on oral treatment with either aluminum-cycle

resins or aluminum hydroxide there was an increase in
serum aluminum concentration; not all of these patients
were on regular dialysis treatment. In these patients
they proposed that the increased serum concentration
was due to the intestinal absorption of aluminum with
retention in serum because of a failure in the normal
renal excretory mechanism for this metal. In some pa-
tients who were on regular dialysis treatment but were
not taking oral aluminum-containing medications the
serum aluminum values were also increased. In this
group of patients they proposed that the hyperalumi-
nemia was due to the fact that they had been “fortui-
tously exposed to a dialysate with a relatively high alu-
minum content” (13). Berlyne and his colleagues (14)
subsequently reported that aluminum intoxication and
hyperaluminemia could be produced in uremic and non-
uremic rats after oral doses of aluminum-containing
salts. In their experimental animals the clinical features
of aluminum toxicity were associated with significant
increases in the aluminum content not only of serum,
but also in liver, heart, striated muscle, brain and bone
tissues.

In 1971, Parsons and his colleagues (15) reported that
there was an increased content of aluminum in some
samples of bone from patients with end-stage chronic
renal failure; all of their patients were on regular long-
term dialysis treatment. In contrast, however, to the
studies of Berlyne and his colleagues (13), they reported
that in their patients there was no correlation between
bone aluminum content and the amount of oral alumi-
num hydroxide that the patient had consumed. They
did, however, observe that “on the whole” the longer
the patient had been uremic and receiving dialysis treat-
ment the higher was the bone content of aluminum.
Parsons and his colleagues (15) did not speculate on the
potential sources of the aluminum, their observations
could have been interpreted as implicating the hemo-
dialysis procedure itself. In support of this proposal are
the earlier observations of Blomfield and her colleagues
(16) who had reported that during hemodialysis both
copper and zinc were actively taken up by blood, in the
dialysis coil, from the hemodialysis fluid, even against
a concentration gradient. There is now a substantial
amount of evidence that, in patients with end-stage
chronic renal failure—especially those managed by
long-term intermittent hemodialysis—there is hyper-
aluminemia with accumulation of aluminum in various
tissues. The excess in serum and tissue results from
intestinal absorption of aluminum salts taken by mouth
and also from the passage of aluminum across the di-
alysis membrane.

Sources of Aluminum
Oral

Aluminum salts are used extensively in the thera-
peutic management of the hyperphosphatemia which
occurs in patients with chronic renal failure. In normal
subjects, aluminum is absorbed from the gastrointes-
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tinal tract; following oral doses of aluminum-containing
salts in normal subjects there is a rise in serum con-
centration followed by an increase in the excretion of
aluminum in the urine (17). In experimental rats the
simultaneous administration of citrate has been re-
ported to have a significant enhancing effect on the in-
testinal absorption of aluminum and its subsequent dep-
osition in the cerebral cortex and bone (18). It could be
proposed that the citrate facilitated the absorption of
aluminum by the formation of a chelate complex. In
patients with chronic renal failure a positive aluminum
balance has been reported in some patients who were
on hemodialysis treatment and who were taking oral
aluminum-containing phosphate-binding gels (19).

Although the major source of aluminum in patients
who develop toxicity is usually the dialysate, the intes-
tinal absorption of the metal from phosphate-binding
gels appears to have been the dominant factor in some
patients (10,20). 1t is possible that individual aluminum
absorption rates vary and that some patients may ab-
sorb excessive amounts from the intestinal tract after
oral administration. It could be postulated that varia-
tions in the intestinal absorption rates of aluminum are
due to variations in species. In patients with chronic
renal failure it has been proposed that parathyroid hor-
mone may contribute to the hyperaluminemia by in-
creasing intestinal absorption and by influencing tissue
distribution (21). The role of parathyroid hormone in
the intestinal absorption of aluminum and the interre-
lationships between aluminum and calcium homeostasis
remain to be defined.

Water

Aluminum is normally present in raw water; the con-
centrations are usually low in ground waters and are
almost always high in surface waters (22). Acid rain
markedly increases the “natural” aluminum content of
water. The effects of acid rain, with specific regard to
the metal content of water are controlled mainly by the
buffering capability of geological factors in the area of
precipitation. The geological factors include the nature
of the bedrock, with regard to both basic minerals and
acid-soluble toxic metals, together with the depth, tex-
ture, mineral and organic content of the overlying soil.
Areas most susceptible to acid rain are those with shal-
low or no soil overlying granite or gneiss bedrock; this
pattern is found in Scandinavia, eastern North America
and parts of northern Britain (23). It is from these areas,
with poorly buffered aquatic ecosystems, that the lethal
effects of acid rain on animal and vegetable life have
been reported. Fish and other forms of animals together
with vegetable life have disappeared from the lake areas
of Canada, eastern North America, Sweden, and Nor-
way (24).

The acidification of lakes and streams by acid rain
probably affects vegetable and some forms of animal life
at pH values that are not directly harmful to fish; at-
tention has, however, been mainly focussed on the lat-
ter. The lethal effects of acid rain on fish life are due

not only to the acidification of their environment but
also to the increased content of aluminum and other
metals that are mobilized from the soil and rock in the
water-shed area. The mobilization of aluminum by acid
rain causes high concentrations of that metal in surface
and ground waters (25). The toxicity of aluminum to
fish is, however, dependent not only on its concentration
but also on its species and the simultaneous pH of the
aquatic environment (26). In a study of acidified lakes
in the Adirondack region aluminum speciation was
found to be highly variable with, as a consequence, a
variation in the toxic effects of aluminum on fish (27).
Driscoll and his colleagues (27) reported that aluminum
in an organic species appeared to be virtually nontoxic
to young fish, while the inorganic forms were lethal. In
addition to the pH value and aluminum concentrations
there is also evidence that the co-existent calcium con-
centration plays a significant role in the survival rate
of fish (28). It is of importance to recognize that mer-
cury, manganese, zinc, nickel, lead, and cadmium are
also washed into lakes and streams as a consequence of
acid precipitation. In this regard, concentrations of zinc
and nickel which are toxic to aquatic life have been
reported (23). The potential health hazards to man of
acid rain-induced increases in pH, and the content of
aluminum and other metals of surface and ground
waters, with particular reference to species warrants
evaluation.

Some domestic tap water contains aluminum in high
concentration, either naturally or because aluminum has
been added as a flocculant in the purification process.
Aluminum salts are used as a flocculant to remove or-
ganic materials present in surface water that might af-
fect either color or taste. Aluminum sulfate is the com-
monly used flocculant. In a recent national survey
involving a random selection of 186 water utilities in
the United States, the aluminum concentrations of fin-
ished waters were usually above the analytical detection
limit of 14 pg/L (22). Miller and his colleagues (22) also
reported that when aluminum was used in the purifi-
cation process there was a 40 to 50% chance that the
concentration of aluminum in the finished water would
be increased above the original concentration in the raw
water. In England the aluminum concentration of tap
water varies considerably not only on a seasonal but
also on a day-to-day basis (29). Parkinson and his col-
leagues (29) ascribed these variations to changes in
weather conditions which affected the organic content
of the water. In contrast to these findings, Miller et al.
(22) reported that in their nationwide study of the
United States there were no obvious seasonal patterns;
other workers, however, in a localized study of lakes
and streams in the northeastern United States reported
the occurrence of seasonal variations in aluminum con-
centrations (27).

Dialysate

Aluminum in the dialysate appears to be the major
source of the metal in those chronic renal failure patients
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who develop aluminum toxicity. The driving force for
aluminum transfer during hemodialysis seems to be the
effective concentration gradient between the dialysate
aluminum and the free diffusible serum aluminum frac-
tion (30). The transfer of aluminum from the dialysate
across the dialyzing membrane appears to occur despite
low concentrations of the metal in the dialysate (31,32).
The major portion, if not all, of aluminum in blood is
tightly bound to serum proteins and an as-yet uniden-
tified lower molecular weight species (32). The identi-
fication of the latter, which is nondialyzable, is of im-
portance in the development of an understanding of the
mechanisms involved in the tissue accumulation of alu-
minum and its consequent toxicity.

The aluminum content of the dialysate depends pri-
marily on the content of the water with which it is
prepared with some contribution from the chemicals
used in the concentrate. The chemical state of the alu-
minum in the dialysate is of considerable importance
because of the effects of organic and inorganic com-
pounds and pH on speciation and thus dialysability. At
a low and high pH, the majority of aluminum is in the
ionic species. Gacek et al. (33) reported that because of
the amphoteric nature of aluminum a highly water-in-
soluble aluminum hydroxide is formed at near neutral
pH. A small change in pH, either to a more acid or
alkaline value, can make a large difference in the amount
of aluminum which is in the dialyzable form.

In patients with chronic renal failure the final pH
value of the dialysate can be affected by the pH of the
water used to make up the dialysate. The pH of the
latter may vary between dialysis centers because of
variations in tap-water pH; this factor may have played
a role in the conflicting reports in the literature on alu-
minum transfer across the membrane during dialysis.
Parkinson and his colleagues (29) reported that if the
dialysate pH was carefully controlled to a value of ap-
proximately 7.0, the majority of the aluminum was in
the colloidal form with a low dialyser clearance value.
The transfer of aluminum during dialysis is dependent
not only on the pH and aluminum concentration of the
dialysis solution but also on the aluminum concentration
of the serum, especially the ultrafiltrable fraction.

Dialysis Encephalopathy/Dementia

In 1972, Alfrey and his colleagues (34) reported the
details of a progressive fatal neurological syndrome
which occurred in some patients on long-term inter-
mittent hemodialysis treatment for chronic renal fail-
ure. The first manifestation of the syndrome in this
group of patients was a speech disorder, followed by
the development of dementia, convulsions, and my-
oclonus; the syndrome terminated in death. In one kid-
ney treatment center, dialysis encephalopathy was the
major cause of death (35). Because of the similarities
between the patients who developed the syndrome with
regard to their clinical history, presentation, course and
autopsy anatomical findings Alfrey and his colleagues
(34) proposed that it was likely that the syndrome had

a common etiological mechanism. They considered that
the syndrome was the result of a metabolic encepha-
lopathy and considered a number of possible factors,
including toxins and the accumulation of heavy and trace
metals; among the latter they specifically discussed the
toxic effects of tin. Although they were unable to pre-
cisely define the cause of the metabolic encephalopathy
and the associated neurological syndrome they con-
cluded that trace metal abnormalities were common in
patients with chronic renal failure on long-term dialysis
treatment.

Alfrey and his colleagues (36) subsequently proposed
that the syndrome called “dialysis encephalopathy” or
“dialysis dementia,” which occurs after three to seven
years of dialysis treatment, may be due to aluminum
intoxication. Their proposal was based on the findings
of increased aluminum content in brain, muscle and bone
tissues of affected patients; the brain gray-matter alu-
minum content was higher in all of their patients with
the syndrome than in any of the controls or other urem-
ics. It is now generally accepted that aluminum is the
toxic etiological factor in the dialysis encephalopathy
syndrome (37-39). The mechanism by which aluminum
acts as a neurotoxin is not clearly defined. It has been
proposed that aluminum acts as a neurotoxin by inhi-
bition of dihydropteridine reductase (40). The inhibition
of dihydropteridine reductase would reduce the brain
content of tetrahydrobiopterin, tyrosine and neuro-
transmitters. The neurotoxicity of aluminum alterna-
tively may involve alterations in the major postsynaptic
enzymes of cholinergic neurotransmission (41). In sup-
port of this mechanism are the observations that alu-
minum inhibits choline transport in erythrocytes (42)
and decreases choline acetyltransferase activity in
nerve tissue (43). Aluminum has also been reported to
inhibit cytosolic and mitochondrial hexokinase activities
in rat brain and thus reduce carbohydrate utilization
(44). The concentrations of aluminum used in these lat-
ter experiments were comparable to those found in the
brains of patients who had died from dialysis enceph-
alopathy.

In a recent epidemiological analysis of six dialysis
centers, using a uniform clinical classification, 55 pa-
tients with dialysis encephalopathy were identified (45).
Dialysis encephalopathy was the direct cause of death
in most cases and the disease appeared to significantly
shorten survival. The overall attack rate of dialysis en-
cephalopathy was 4% and varied among the six centers
from 2.2 to 14.7%; the difference in the rates was ex-
plained by variations to aluminum exposure in the di-
alysate water. The risk of developing encephalopathy
was significantly related to cumulative aluminum ex-
posure in the dialysis water. It is also now recognized
that this neurological syndrome has a common etiology

.with osteomalacic dialysis osteodystrophy (29,46).

Osteomalacic Dialysis
Osteodystrophy

Bone pain, as a consequence of metabolic bone dis-
ease, is a common symptom in patients with chronic
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renal failure who are on a long-term intermittent he-
modialysis treatment. The metabolic bone disease in
these patients is progressive and should be called “di-
alysis osteodystrophy”—a term that distinguishes it,
and some aspects of its pathogenesis, from renal osteo-
dystrophy in the undialyzed patient. One of the major
problems that has hampered studies into the etiology
of dialysis osteodystrophy is that the reported incidence
and rate of progression of its various components has
varied not only between countries but also between di-
alysis centers within a country, despite apparently sim-
ilar dialysis techniques. The characteristic of dialysis
osteodystrophy and its various components is that it
progresses or develops despite the maintenance of
serum calcium and magnesium and their fractions at
concentrations which in a healthy person would not in-
terfere with bone mineralization. The osteomalacic com-
ponent of dialysis osteodystrophy is a particular prob-
lem in that it is associated with a high incidence of
fractures.

The type of osteomalacia that is caused by an excess
of aluminum, as the etiological factor, is unresponsive
to treatment with either vitamin D or its biologically
active metabolites. This type of osteomalacia usually
occurs in patients on dialysis treatment but it may also
occur in nondialyzed patients (12). The mechanism for
the disordered bone formation induced by an excess of
aluminum remains to be clarified; it may involve a dis-
turbance either in the formation of calcium apatite or
in the bone mineralization process (9,47). Aluminum
forms a complex with citrate that is a potent inhibitor
of bone mineralization and the growth of caleium phos-
phate crystals in vitro. Thomas and Meyer (47) proposed
that in patients with chronic renal failure the aluminum
concentration exceeds that which is required for the
formation of the aluminum-citrate complex and that the
action of the complex as a crystal poison could account
for the failure of bone mineralization. There is also some
evidence from in vitro studies which suggest that alu-
minum may affect the activities of the bone enzymes
acid and alkaline phosphatase and modify their response
to parathyroid hormone and 1,25-dihydroxycholecalci-
ferol (48).

Water Aluminum Content and
Toxicity

In 1977, Platts and her colleagues (49) reported data
on the prevalence of dialysis encephalopathy and spon-
taneous bone fractures in 202 patients who were on
home hemodialysis for chronic renal failure. Noting the
uneven geographical distribution of these complications
they investigated the water supplies. The tap water
used by patients who developed fractures or encepha-
lopathy had concentrations of calcium and fluorine which
were lower, while the concentrations of aluminum and
manganese were higher, than those in the water of pa-
tients without these complications. The patients with
multiple fractures had been dialyzed against water with

higher aluminum and manganese content than those
with a single fracture. Platts and her colleagues (49) did
not incriminate oral aluminum hydroxide ingestion in
the genesis of these complications because only some of
the patients took the gel and even they did not take it
consistently. Instead they concluded that “some con-
taminant in the water used for dialysis is very probably
responsible for the development of dialysis encephalop-
athy and pathological fractures.” Although they did not
definitively incriminate aluminum as the toxic contam-
inant, they proposed that patients who were being di-
alyzed in areas with a high aluminum content in the tap
water should be supplied with water deionizers. ,

The beneficial effect of using deionized water to pre-
pare the dialysate was subsequently confirmed by other
workers. Ward and his colleagues (50) reported that
after one to four years of hemodialysis treatment, os-
teomalacia was evident in only 15% of a group of patients
using dionized water compared with 70% of a group
using softened, nondeionized water from the same
source. They reported that in dialysis centers which
used tap water with a high aluminum content there was
a high incidence of both osteomalacia and dialysis en-
cephalopathy. The close association between the occur-
rence of these two complications was consistent, in their
opinion, with a common etiology. They also proposed
that the evidence that aluminum absorption from the
dialysate caused both osteomalacic dialysis osteodys-
trophy and dialysis encephalopathy was strong enough
to justify the expense of treating tap water that had a
high aluminum content prior to its use in the preparation
of the dialysate. Ward and his colleagues (50) drew at-
tention to their findings that water softeners removed
only about one-half of the aluminum content of the tap
water and did so unreliably; the process of deionization
and particularly reverse osmosis were much more ef-
fective in removing aluminum from the water supply
that they studied. In that particular water supply, how-
ever, most of the aluminum present was in the ionized
form. They also noted that in other water supplies some
of the aluminum is in the nonionic form and may pass
through a deionizer, but change chemically when con-
centrate is added to the water during the preparation
of the dialysate.

The critical role of the aluminum content of the tap
water used to prepare the dialysate and the uneven
geographical distribution of the development of osteo-
malacic dialysis osteodystrophy and dialysis osteodys-
trophy was clarified in a nationwide epidemiological sur-
vey in the United Kingdom (51). In that epidemiological
survey, the data were derived from 1,293 patients in
18 dialysis centers; it was reported that there was a
highly significant correlation between the aluminum
content of water used to prepare dialysate and the in-
cidence of osteomalacic dialysis osteodystrophy and di-
alysis encephalopathy (51). Parkinson and his colleagues
(51) concluded that the adequate treatment of water,
from the start of a patient on dialysis therapy, appeared
to be essential to prevent the development of these
syndromes. They also proposed from their epidemiol-
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ogical survey findings that the “ideal or safe” aluminum
dialysate content was probably below 50 pg/L and was
more likely to be below 20 pg/L. Reverse osmosis is
now the recommended method of water treatment since
it provides water with a low aluminum content (< 10
ng/L) (52). It has also been recommended that the final
aluminum concentration of the dialysate after dilution
with treated water should be less than 15 pg/L and
preferably less than 10 pg/L (52). The latter figure ap-
plies to dialysate fluids used for either hemodialysis or
peritoneal dialysis. Reverse osmosis also provides
water with a low content of other cations and eliminates
organic contaminants which may contribute to the prob-
lems associated with hemodialysis. There may be be-
tween-batch differences in the aluminum concentration
of dialysate concentrate and these variations need to be
considered as a potential source of aluminum when mon-
itoring programs are being established.

Conclusions

High concentrations of aluminum in water have been
implicated as of etiological importance in some specific
neurological disorders in patients with normal renal
function. The precise role of aluminum in these disor-
ders is, however, controversial.

In patients with end-stage chronic renal failure on
dialysis treatment, either by hemo- or peritoneal-di-
alysis techniques, it has been established that aluminum
accumulates in serum and tissues and exerts a toxic
action. Aluminum accumulation, with toxicity, also oc-
curs in some patients with chronic renal failure who are
not on dialysis treatment but who are on oral therapy
with aluminum-containing phosphate binding agents.

In normal subjects aluminum is absorbed from the
gastrointestinal tract and is excreted by the kidney in
the urine. A failure in the normal renal excretory mech-
anism accounts for the accumulation of aluminum in the
blood and tissues of patients with chronic renal failure.
The diet content of citrate appears to enhance the ab-
sorption rate of aluminum from the intestinal tract by
an effect on species and specifically the formation of a
chelate complex. The speciation effect of other dietary
constituents on aluminum and the intestinal absorption
rate of this metal requires further investigation, as does
the use of alternative non-aluminum-containing phos-
phate binding therapeutic agents in patients with
chronic renal failure.

Aluminum in the dialysate appears to be the major
source of the metal in patients with chronic renal failure
who develop aluminum toxicity. The aluminum content
of the dialysate depends primarily on the content of the
water with which it is prepared; there may be some
contribution from the chemicals used in the concentrate
which is added to the water to prepare the dialysate.
Some domestic tap water supplies contain aluminum in
high concentration, either naturally or because, more
commonly, aluminum has been added as a flocculant in
the purification process; in this regard the use of non-
aluminum-containing flocculating agents warrants eval-

uation. Acid rain markedly increases the “natural” alu-
minum content of water.

The species of aluminum in water may affect the in-
testinal absorption rate in normal subjects and the rate
of dialysis in patients with chronic renal failure. Alu-
minum species in water are complex; small variations
in pH of the water can change aluminum from a highly
insoluble colloidal form to much more water soluble spe-
cies. Aluminum is amphoteric, and the insoluble form
predominates at neutral pH, whereas a small change in
pH to either a more acid or alkaline value can make a
large difference in the amount of aluminum in the di-
alyzable form. The species of aluminum in water, the
effect of pH and other variables, including metals, are
potentially of considerable importance and require in-
vestigation.

In patients with chronic renal failure, the driving
force for aluminum transfer during dialysis seems to be
the effective concentration gradient between the dialy-
sate aluminum and the free diffusible serum aluminum
fraction. The transfer of aluminum from the dialysate
across the dialyzing membrane appears to occur despite
low concentrations of the metal in the dialysate. The
species of aluminum in the final dialysate may signifi-
cantly affect the dialyzability of aluminum into the blood
compartment, and subsequent tissue deposition, and is
a topic that warrants further study in patients with
chronic renal failure.

The major portion, if not all, of aluminum in the blood
compartment is tightly bound to serum proteins and an
as yet unidentified lower molecular weight species. The
identification of the latter may be of importance in the
mechanisms of tissue accumulation and consequent tox-
icity of aluminum in patients with chronic renal failure.
In these patients the increased tissue content of alu-
minum appears to be the major etiological factor in the
development of the neurological syndrome termed
either dialysis encephalopathy or dialysis dementia and
the form of osteomalacia which is termed osteomalacic
dialysis osteodystrophy.
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